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Abstract

What is the computational model behind a Trans-
former? Where recurrent neural networks have
direct parallels in finite state machines, allow-
ing clear discussion and thought around archi-
tecture variants or trained models, Transformers
have no such familiar parallel. In this paper we
aim to change that, proposing a computational
model for the transformer-encoder in the form
of a programming language. We map the basic
components of a transformer-encoder—attention
and feed-forward computation—into simple prim-
itives, around which we form a programming lan-
guage: the Restricted Access Sequence Process-
ing Language (RASP). We show how RASP can
be used to program solutions to tasks that could
conceivably be learned by a Transformer, and how
a Transformer can be trained to mimic a RASP so-
lution. In particular, we provide RASP programs
for histograms, sorting, and Dyck-languages. We
further use our model to relate their difficulty in
terms of the number of required layers and atten-
tion heads: analyzing a RASP program implies a
maximum number of heads and layers necessary
to encode a task in a transformer. Finally, we see
how insights gained from our abstraction might be
used to explain phenomena seen in recent works.

1. Introduction
We present a computational model for the transformer ar-
chitecture in the form of a simple language which we dub
RASP (Restricted Access Sequence Processing Language).
Much as the token-by-token processing of RNNs can be
conceptualized as finite state automata (Cleeremans et al.,
1989), our language captures the unique information-flow
constraints under which a transformer operates as it pro-
cesses input sequences. Our model helps reason about how
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a transformer operates at a higher-level of abstraction, rea-
soning in terms of a composition of sequence operations
rather than neural network primitives.

We are inspired by the use of automata as an abstract compu-
tational model for recurrent neural networks (RNNs). Using
automata as an abstraction for RNNs has enabled a long line
of work, including extraction of automata from RNNs (Om-
lin & Giles, 1996; Weiss et al., 2018b; Ayache et al., 2018),
analysis of RNNs’ practical expressive power in terms of au-
tomata (Weiss et al., 2018a; Rabusseau et al., 2019; Merrill,
2019; Merrill et al., 2020b), and even augmentations based
on automata variants (Joulin & Mikolov, 2015). Previous
work on transformers explores their computational power,
but does not provide a computational model (Yun et al.,
2020; Hahn, 2020; Pérez et al., 2021).

Thinking in terms of the RASP model can help derive com-
putational results. Bhattamishra et al. (2020) and Ebrahimi
et al. (2020) explore the ability of transformers to recognize
Dyck-k languages, with Bhattamishra et al. providing a
construction by which Transformer-encoders can recognize
a simplified variant of Dyck-k. Using RASP, we succinctly
express the construction of (Bhattamishra et al., 2020) as a
short program, and further improve it to show, for the first
time, that transformers can fully recognize Dyck-k for all k.

Scaling up the complexity, Clark et al. (2020) showed em-
pirically that transformer networks can learn to perform
multi-step logical reasoning over first order logical formulas
provided as input, resulting in “soft theorem provers”. For
this task, the mechanism of the computation remained elu-
sive: how does a transformer perform even non-soft theorem
proving? As the famous saying by Richard Feynman goes,
“what I cannot create, I do not understand”: using RASP, we
were able to write a program that performs similar logical
inferences over input expressions, and then “compile” it to
the transformer hardware, defining a sequence of attention
and multi-layer perceptron (MLP) operations.

Considering computation problems and their implementa-
tions in RASP allows us to “think like a transformer” while
abstracting away the technical details of a neural network
in favor of symbolic programs. Recognizing that a task
is representable in a transformer is as simple as finding a
RASP program for it, and communicating this solution—
previously done by presenting a hand-crafted transformer
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1 same_tok = select(tokens ,tokens ,==);

2 hist = selector_width(

3 same_tok ,

4 assume_bos = True);

5

6 first = not has_prev(tokens);

7 same_count = select(hist ,hist ,==);

8 same_count_reprs = same_count and

9 select(first ,True ,==);

10

11 hist2 = selector_width(

12 same_count_reprs ,

13 assume_bos = True);

Figure 1: We consider double-histogram, the task of counting for each input token how many unique input tokens have the
same frequency as itself (e.g.: hist2("§aaabbccdef")=[§,1,1,1,2,2,2,2,3,3,3]). (a) shows a RASP program for this
task, (b) shows the selection patterns of that same program, compiled to a transformer architecture and applied to the input
sequence §aaabbccdef, (c) shows the corresponding attention heatmaps, for the same input sequence, in a 2-layer 2-head
transformer trained on double-histogram. This particular transformer was trained using both target and attention supervision,
i.e.: in addition to the standard cross entropy loss on the target output, the model was given an MSE-loss on the difference
between its attention heatmaps and those expected by the RASP solution. The transformer reached test accuracy of 99.9%
on the task, and comparing the selection patterns in (b) with the heatmaps in (c) suggests that it has also successfully learned
to replicate the solution described in (a).

for the task—is now possible through a few lines of code.
Thinking in terms of RASP also allows us to shed light on a
recent empirical observation of transformer variants (Press
et al., 2020), and to find concrete limitations of “efficient
transformers” with restricted attention (Tay et al., 2020).

In Section 5, we show how a compiled RASP program can
indeed be realised in a neural transformer (as in Figure 1),
and occasionally is even the solution found by a transformer
trained on the task using gradient descent (Figs 5 and 4).

Code We provide a RASP read-evaluate-print-loop (REPL)
in http://github.com/tech-srl/RASP, along with a
RASP cheat sheet and link to replication code for our work.

2. Overview
We begin with an informal overview of RASP, with exam-
ples. The formal introduction is given in Section 3.

Intuitively, transformers’ computations are applied to their
entire input in parallel, using attention to draw on and com-
bine tokens from several positions at a time as they make
their calculations (Vaswani et al., 2017; Bahdanau et al.,
2015; Luong et al., 2015). The iterative process of a trans-
former is then not along the length of the input sequence but
rather the depth of the computation: the number of layers it
applies to its input as it works towards its final result.

The computational model. Conceptually, a RASP com-
putation over length-n input involves manipulation of se-
quences of length n, and matrices of size n × n. There
are no sequences or matrices of different sizes in a RASP
computation. The abstract computation model is as follows:

The input of a RASP computation is two sequences, tokens
and indices. The first contains the user-provided input, and
the second contains the range 0, 1, ..., n− 1. The output of
a RASP computation is a sequence, and the consumer of the
output can choose to look only at specific output locations.

Sequences can be transformed into other sequences through
element-wise operations. For example, for the sequences
s1 = [1, 2, 3] and s2 = [4, 5, 6], we can derive s1 + s2 =
[5, 7, 9], s1+2 = [3, 4, 5], pow(s1, 2) = [1, 4, 9], s1 > 2 =
[F, F, T ], pairwise_mul(s1, s2) = [4, 10, 18], and so on.

Sequences can also be transformed using a pair of select and
aggregate operations (Figure 2). Select operations take two
sequences k, q and a boolean predicate p over pairs of values,
and return a selection matrix S such that for every i, j ∈ [n],
S[i][j] = p(k[i], q[j]). Aggregate operations take a matrix S
and a numeric sequence v, and return a sequence s in which
each position s[i] combines the values in v according to row
i in S (see full definition in Section 3).

Aggregate operations (over select matrices) are the only way
to combine values from different sequence positions, or to
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s = select([1,2,2],[0,1,2],==) res=aggregate(s, [4,6,8])

    1  2  2 
0  F  F  F 
1  T  F  F 
2  F  T  T

              4  6  8 
 F  F  F   4  6  8   =>   0 
 T  F  F   4  6  8   =>   4   =>   [0,4,7] 
 F  T  T   4  6  8   =>   7

Figure 2: Visualizing the select and aggregate operations.
On the left, a selection matrix s is computed by select, which
marks for each query position all of the key positions with
matching values according to the given comparison operator
==. On the right, aggregate uses s as a filter over its input
values, averaging only the selected values at each position
in order to create its output, res. Where no values have been
selected, aggregate substitutes 0 in its output.

move values from one position to another. For example, to
perform the python computation: x = [a[0] for _ in a],
we must first use S = select(indices, 0,=) to select the first
position, and then x = aggregate(S, a) to broadcast it across
a new sequence of the same length.

RASP programs are lazy functional, and thus operate on
functions rather than sequences. That is, instead of a se-
quence indices= [0, 1, 2], we have a function indices that
returns [0, 1, 2] on inputs of length 3. Similarly, s3=s1+s2
is a function, that when applied to an input x will produce
the value s3(x), which will be computed as s1(x)+s2(x).
We call these functions s-ops (sequence operators). The
same is true for the selection matrices, whose functions we
refer to as selectors, and the RASP language is defined in
terms of s-ops and selectors, not sequences and matrices.
However, the conceptual model to bear in mind is that of
operations over sequences and selection matrices.

Example: Double Histograms The RASP program
in Figure 1 solves double-histogram, the task of count-
ing for each token how many unique input tokens
in the sequence have the same frequency as its own:
hist2("§aabcd")=[§,1,1,3,3,3]. The program begins
by creating the the selector same_tok, in which each input
position focuses on all other positions containing the same
token as its own, and then applies the RASP operation
selector_width to it in order to obtain the s-op hist,
which computes the frequency of each token in the in-
put: hist("hello")=[1,1,2,2,1]. Next, the program
uses the function has_prev1 to create the s-op first,
which marks the first appearance of each token in a se-
quence: first("hello")=[T,T,T,F,T]. Finally, apply-
ing selector_width to the selector same_count_reprs,
which focuses each position on all ‘first’ tokens with the
same frequency as its own, provides hist2 as desired.

1Presented in Figure 12 in Appendix B.

1 def frac_prevs(sop ,val){

2 prevs = select(indices ,indices ,<=);

3 return aggregate(prevs ,

4 indicator(sop==val));

5 }

6

7 def pair_balance(open ,close) {

8 opens = frac_prevs(tokens ,open);

9 closes = frac_prevs(tokens ,close);

10 return opens - closes;

11 }

12

13 bal1 = pair_balance ("(" ,")");

14 bal2 = pair_balance ("{" ,"}");

15

16 negative = bal1<0 or bal2<0;

17 had_neg = aggregate(select_all ,

18 indicator(negative))>0;

19 select_last = select(indices ,length -1,==);

20 end_0 = aggregate(select_last ,

21 bal1==0 and bal2==0);

22

23 shuffle_dyck2 = end_0 and not had_neg;

Figure 3: RASP program for the task shuffle-dyck-2 (bal-
ance 2 parenthesis pairs, independently of each other), cap-
turing a higher level representation of the hand-crafted trans-
former presented by Bhattamishra et al. (2020).

Example: Shuffle-Dyck in RASP As an example of the
kind of tasks that are natural to encode using RASP, consider
the Shuffle-Dyck language, in which multiple parentheses
types must be balanced but do not have to satisfy any or-
der with relation to each other. (For example, "([)]" is
considered balanced). In their work on transformer expres-
siveness, Bhattamishra et al. (2020) present a hand-crafted
transformer for this language, including the details of which
dimension represents which partial computation. RASP
can concisely describe the same solution, showing the high-
level operations while abstracting away the details of their
arrangement into an actual transformer architecture.

We present this solution in Figure 3: the code compiles to
a transformer architecture using 2 layers and a total of 3
heads, exactly as in the construction of Bhattamishra et al..
These numbers are inferred by the RASP compiler: the
programmer does not have to think about such details.

A pair of parentheses is balanced in a sequence if their run-
ning balance is never negative, and additionally is equal to
exactly 0 at the final input token. Lines 13–23 check this
definition: lines 13 and 14 use pair_balance to compute
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the running balances of each parenthesis pair, and 17 checks
whether these balances were negative anywhere in the se-
quence. The snippet in 21 (bal1==0 and bal2==0) creates
an s-op checking at each location whether both pairs are
balanced, with the aggregation of line 20 loading the value
of this s-op from the last position. From there, a boolean
composition of end_0 and had_neg defines shuffle-dyck-2.

Compilation and Abstraction The high-level operations
in RASP can be compiled down to execute on a transformer:
for example, the code presented in Figure 1 compiles to a
two-layer, 3-head (total) architecture, whose attention pat-
terns when applied to the input sequence "§aaabbccdef"
are presented in Figure 1(b). (The full compiled compu-
tation flow for this program—showing how its component
s-ops interact—is presented in Appendix B).

RASP abstracts away low-level operations into simple prim-
itives, allowing a programmer to explore the full potential
of a transformer without getting bogged down in the details
of how these are realized in practice. At the same time,
RASP enforces the information-flow constraints of trans-
formers, preventing anyone from writing a program more
powerful than they can express. One example of this is the
lack of input-dependent loops in the s-ops, reflecting the fact
that transformers cannot arbitrarily repeat operations2. An-
other is in the selectors: for each two positions, the decision
whether one selects (‘attends to’) the other is pairwise.

We find RASP a natural tool for conveying transformer
solutions to given tasks. It is modular and compositional,
allowing us to focus on arbitrarily high-level computations
when writing programs. Of course, we are restricted to
tasks for which a human can encode a solution: we do not
expect any researcher to implement, e.g., a strong language
model or machine-translation system in RASP—these are
not realizable in any programming language. Rather, we
focus on programs that convey concepts that people can
encode in “traditional” programming languages, and the
way they relate to the expressive power of the transformer.

In Section 5, we will show empirically that RASP solutions
can indeed translate to real transformers. One example is
given in Figure 1: having written a RASP program (left)
for the double-histograms task, we analyse it to obtain the
number of layers and heads needed for a transformer to
mimic our solution, and then train a transformer with super-
vision of both its outputs and its attention patterns to obtain
a neural version of our solution (right). We find that the
transformer can accurately learn the target attention patterns
and use them to reach a high accuracy on the target task.

2Though work exploring such transformer variants exists: De-
hghani et al. (2019) devise a transformer architecture with a control
unit, which can repeat its sublayers arbitrarily many times.

3. The RASP language
RASP contains a small set of primitives and operations built
around the core task of manipulating sequence processing
functions referred to as s-ops (sequence operators), func-
tions that take in an input sequence and return an output
sequence of the same length. Excluding some atomic values,
and the convenience of lists and dictionaries, everything in
RASP is a function. Hence, to simplify presentation, we of-
ten demonstrate RASP values with one or more input-output
pairs: for example, identity("hi")="hi"3.

RASP has a small set of built-in s-ops, and the goal of
programming in RASP is to compose these into a final
s-op computing the target task. For these compositions,
the functions select (creating selection matrices called se-
lectors), aggregate (collapsing selectors and s-ops into a
new s-ops), and selector_width (creating an s-op from
a selector) are provided, along with several elementwise
operators reflecting the feed-forward sublayers of a trans-
former. As noted in Section 2, while all s-ops and selectors
are in fact functions, we will prefer to talk in terms of the
sequences and matrices that they create. Constant values
in RASP (e.g., 2, T , h) are treated as s-ops with a single
value broadcast at all positions, and all symbolic values are
assumed to have an underlying numerical representation
which is the value being manipulated in practice.

The built-in s-ops The simplest s-op is the identity, given
in RASP under the name tokens: tokens("hi")="hi".
The other built-in s-ops are indices and length,
processing input sequences as their names suggest:
indices("hi")=[0,1], and length("hi")=[2,2].

s-ops can be combined with constants (numbers, booleans,
or tokens) or each other to create new s-ops, in either an
elementwise or more complicated fashion.

Elementwise combination of s-ops is done by
the common operators for the values they con-
tain, for example: (indices+1)("hi")=[1,2], and
((indices+1)==length)("hi")=[F,T]. This includes
also a ternary operator: (tokens if (indices%2==0)
else "-")("hello")="h-l-o". When the condition of
the operator is an s-op itself, the result is an s-op that is
dependent on all 3 of the terms in the operator creating it.

Select and Aggregate operations are used to combine in-
formation from different sequence positions. A selector
takes two lists, representing keys and queries respectively,
and a predicate p, and computes from these a selection ma-
trix describing for each key, query pair (k, q) whether the
condition p(k, q) holds.

3We use strings as shorthand for a sequence of characters.
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For example,

sel([0, 1, 2], [1, 2, 3], <) =

T F F
T T F
T T T


An aggregate operation takes one selection matrix and one
list, and averages for each row of the matrix the values of
the list in its selected columns. For example,

agg(

T F F
T T F
T T T

 , [10, 20, 30]) = [10, 15, 20]

Intuitively, a select-aggregate pair can be thought of as a
two-dimensional map-reduce operation. The selector can be
viewed as performing filtering, and aggregate as performing
a reduce operation over the filtered elements (see Figure 2).

In RASP, the selection operation is provided through
the function select, which takes two s-ops k and q
and a comparison operator ◦ and returns the composi-
tion of sel(·, ·, ◦) with k and q, with this sequence-to-
matrix function referred to as a selector. For exam-
ple: a=select(indices,indices,<) is a selector, and
a("hey")=[[F,F,F],[T,F,F],[T,T,F]]. Similarly, the
aggregation operation is provided through aggregate,
which takes one selector and one s-op and returns
the composition of agg with these. For example:
aggregate(a,indices+1)("hey")=[0,1,1.5].4

Simple select-aggregate examples To create the s-
op that reverses any input sequence, we build a se-
lector that requests for each query position the to-
ken at the opposite end of the sequence, and then
aggregate that selector with the original input to-
kens: flip=select(indices,length-indices-1,==),
and reverse=aggregate(flip,tokens). For example:

flip("hey") =

F F T
F T F
T F F


reverse("hey") = "yeh"

To compute the fraction of appearances of the token
"a" in our input, we build a selector that gathers infor-
mation from all input positions, and then aggregate it

4For convenience and efficiency, when averaging the fil-
tered values in an aggregation, for every position where only
a single value has been selected, RASP passes that value di-
rectly to the output without attempting to ‘average’ it. This
saves the programmer from unnecessary conversion into and
out of numerical representations when making simple transfers
of tokens between locations: for example, using the selector
load1=select(indices,1,==), we may directly create the s-
op aggregate(load1,tokens)("hey")="eee". Additionally, in
positions when no values are selected, the aggregation simply re-
turns a default value for the output (in Figure 2, we see this with
default value 0), this value may be set as one of the inputs to the
aggregate function.

with a sequence broadcasting 1 wherever the input to-
ken is "a", and 0 everywhere else. This is expressed
as select_all=select(1,1,==), and then frac_as =
aggregate(select_all,1 if tokens=="a" else 0).

Selector manipulations Selectors can be combined ele-
mentwise using boolean logic. For example, for the same
load1 and flip from above:

(load1 or flip)("hey") =

F T T
F T F
T T F


selector width The final operation in RASP is the powerful
selector_width, which takes as input a single selector
and returns a new s-op that computes, for each output
position, the number of input values which that selector has
chosen for it. This is best understood by example: using
the selector same_token=select(tokens,tokens,==)
that filters for each query position the keys with
the same token as its own, we can compute its
width to obtain a histogram of our input sequence:
selector_width(same_token)("hello")=[1,1,2,2,1].

Additional operations: While the above operations are
together sufficient to represent any RASP program, RASP
further provides a library of primitives for common op-
erations, such as in – either of a value within a se-
quence: ("i" in tokens)("hi")=[T,T], or of each
value in a sequence within some static list: tokens in
["a","b","c"])("hat")=[F,T,F]. RASP also provides
functions such as count, or sort.

3.1. Relation to a Transformer

We discuss how the RASP operations compile to describe the
information flow of a transformer architecture, suggesting
how many heads and layers are needed to solve a task.

The built-in s-ops indices and tokens reflect
the initial input embeddings of a transformer,
while length is computed in RASP: length=
1/aggregate(select_all,indicator(indices==0)),
where select_all=select(1,1,==).

Elementwise Operations reflect the feed-forward sub-
layers of a transformer. These have overall not been re-
stricted in any meaningful way: as famously shown by
Hornik et al. (1989), MLPs such as those present in the
feed-forward transformer sub-layers can approximate with
arbitrary accuracy any borel-measurable function, provided
sufficiently large input and hidden dimensions.

Selection and Aggregation Selectors translate to attention
matrices, defining for each input the selection (attention) pat-
tern used to mix the input values into a new output through
weighted averages, and aggregation reflects this final averag-
ing operation. The uniform weights dictated by our selectors
reflect an attention pattern in which ‘unselected’ pairs are
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all given strongly negative scores, while the selected pairs
all have higher, similar, scores. Such attention patterns are
supported by the findings of (Merrill et al., 2020a).

Decoupling selection and aggregation in RASP allows
selectors to be reused in multiple aggregations, abstract-
ing away the fact that these may actually require separate
attention heads in the compiled architecture. Making se-
lectors first class citizens also enables functions such as
selector_width, which take selectors as parameters.

Additional abstractions All other operations, including
the powerful selector_width operation, are implemented
in terms of the above primitives. selector_width in par-
ticular can be implemented such that it compiles to either
one or two selectors, depending on whether or not one can
assume a beginning-of-sequence token is added to the input
sequence. Its implementation is given in Appendix B.

Compilation Converting an s-op to a transformer archi-
tecture is as simple as tracing its computation flow out
from the base s-ops. Each aggregation is an attention
head, which must be placed at a layer later than all of
its inputs. Elementwise operations are feedforward oper-
ations, and sit in the earliest layer containing all of their
dependencies. Some optimisations are possible: for ex-
ample, aggregations performed at the same layer with the
same selector can be merged into the same attention head.
A “full" compilation—to concrete transformer weights—
requires to e.g. derive MLP weights for the elementwise
operations, and is beyond the scope of this work. RASP
provides a method to visualize the compiled computation
flow of any s-op and input pair: the flows in Figs 4
and 5 were rendered using draw(reverse,"abcde") and
draw(hist,"§aabbaabb").

4. Implications and insights
Restricted-Attention Transformers Multiple works pro-
pose restricting the attention mechanism to create more
efficient transformers, reducing the time complexity of each
layer from O(n2) to O(nlog(n)) or even O(n) with respect
to the input sequence length n (see Tay et al. (2020) for a
survey of such approaches). Several of these do so using
sparse attention, in which the attention is masked using
different patterns to reduce the number of locations that can
interact ((Child et al., 2019; Beltagy et al., 2020; Ainslie
et al., 2020; Zaheer et al., 2020; Roy et al., 2021)).

Considering such transformer variants in terms of RASP
allows us to reason about the computations they can and
cannot perform. In particular, these variants of transformers
all impose restrictions on the selectors, permanently forcing
some of the n2 index pairs in every selector to False. But
does this necessarily weaken these transformers?

In Appendix B we present a sorting algorithm in RASP, ap-

plicable to input sequences with arbitrary length and alpha-
bet size5. This problem is known to require at Ω(n log(n))
operations in the input length n—implying that a standard
transformer can take full advantage of Ω(n log(n)) of the
n2 operations it performs in every attention head. It fol-
lows from this that all variants restricting their attention to
o(n log(n)) operations incur a real loss in expressive power.

Sandwich Transformers Recently, Press et al. (2020)
showed that reordering the attention and feed-forward sub-
layers of a transformer affects its ability to learn language
modeling tasks. In particular, they showed that: 1. pushing
feed-forward sublayers towards the bottom of a transformer
weakened it; and 2. pushing attention sublayers to the bot-
tom and feed-forward sublayers to the top strengthened it,
provided there was still some interleaving in the middle.

The base operations of RASP help us understand the observa-
tions of Press et al.. Any arrangement of a transformer’s sub-
layers into a fixed architecture imposes a restriction on the
number and order of RASP operations that can be chained
in a program compilable to that architecture. For example,
an architecture in which all feed-forward sublayers appear
before the attention sublayers, imposes that no elementwise
operations may be applied to the result of any aggregation.

In RASP, there is little value to repeated elementwise op-
erations before the first aggregate: each position has only
its initial input, and cannot generate new information. This
explains the first observation of Press et al.. In contrast, an
architecture beginning with several attention sublayers—i.e.,
multiple select-aggregate pairs—will be able to gather
a large amount of information into each position early in
the computation, even if only by simple rules6. More com-
plicated gathering rules can later be realised by applying
elementwise operations to aggregated information before
generating new selectors, explaining the second observation.

Recognising Dyck-k Languages The Dyck-k languages—
the languages of sequences of correctly balanced parenthe-
ses, with k parenthesis types—have been heavily used in
considering the expressive power of RNNs (Sennhauser &
Berwick, 2018; Skachkova et al., 2018; Bernardy, 2018;
Merrill, 2019; Hewitt et al., 2020).

Such investigations motivate similar questions for trans-
formers, and several works approach the task. Hahn (2020)
proves that transformer-encoders with hard attention can-
not recognise Dyck-2. Bhattamishra et al. (2020) and Yao
et al. (2021) provide transformer-encoder constructions

5Of course, realizing this solution in real transformers requires
sufficiently stable word and positional embeddings—a practical
limitation that applies to all transformer variants.

6While the attention sublayer of a transformer does do some
local manipulations on its input to create the candidate output
vectors, it does not contain the powerful MLP with hidden layer as
is present in the feed-forward sublayer.
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for recognizing simplified variants of Dyck-k, though the
simplifications are such that no conclusion can be drawn
for unbounded depth Dyck-k with k > 1. Optimistically,
Ebrahimi et al. (2020) train a transformer-encoder with
causal attention masking to process Dyck-k languages with
reasonable accuracy for several k > 1, finding that it learns
a stack-like behaviour to complete the task.

We consider Dyck-k using RASP, specifically defining
Dyck-k-PTF as the task of classifying for every prefix of
a sequence whether it is legal, but not yet balanced (P),
balanced (T), or illegal (F). We show that RASP can solve
this task in a fixed number of heads and layers for any k,
presenting our solution in Appendix B7.

Symbolic Reasoning in Transformers Clark et al. (2020)
show that transformers are able to emulate symbolic reason-
ing: they train a transformer which, given the facts “Ben
is a bird" and “birds can fly", correctly validates that “Ben
can fly". Moreover, they show that transformers are able to
perform several logical ‘steps’: given also the fact that only
winged animals can fly, their transformer confirms that Ben
has wings. This finding however does not shed any light on
how the transformer is achieving such a feat.

RASP empowers us to approach the problem on a high level.
We write a RASP program for the related but simplified
problem of containment and inference over sets of elements,
sets, and logical symbols, in which the example is written
as b∈B, x∈B→x∈F, b∈F? (implementation available in
our repository). The main idea is to store at the position of
each set symbol the elements contained and not contained
in that set, and at each element symbol the sets it is and
is not contained in. Logical inferences are computed by
passing information between symbols in the same ‘fact’,
and propagated through pairs of identical set or element
symbols, which share their stored information.

Use of Separator Tokens Clark et al. (2019) observe that
many attention heads in BERT (Devlin et al., 2019) (some-
times) focus on separator tokens, speculating that these are
used for “no-ops" in the computation. (Ebrahimi et al.,
2020) find that transformers more successfully learn Dyck-
k languages when the input is additionally provided with a
beginning-of-sequence (BOS) token, with the trained mod-
els treating it as a base in their stack when there are no open
parentheses. Our RASP programs suggest an additional
role that such separators may be playing: by providing a
fixed signal from a ‘neutral’ position, separators facilitate
conditioned counting in transformers, that use the diffusion
of the signal to compute how many positions a head was
attending to. Without such neutral positions, counting re-
quires an additional head, such that an agreed-upon position

7We note that RASP does not suggest the embedding width
needed to encode this solution in an actual transformer.

may artificially be treated as neutral in one head and then
independently accounted for in the other.

A simple example of this is seen in Figure 5. There,
selector_width is applied with a BOS token, creating
in the process an attention pattern that focuses on the
first input position (the BOS location) from all query
positions, in addition to the actual positions selected
by select(tokens,tokens,==). A full description of
selector_width is given in Appendix B.

5. Experiments
We evaluate the relation of RASP to transformers on three
fronts: 1. its ability to upper bound the number of heads and
layers required to solve a task, 2. the tightness of that bound,
3. its feasibility in a transformer, i.e., whether a sufficiently
large transformer can encode a given RASP solution., train-
ing several transformers. We relegate the exact details of
the transformers and their training to Appendix A.

For this section, we consider the following tasks:

1. Reverse, e.g.: reverse("abc")="cba".
2. Histograms, with a unique beginning-of-sequence

(BOS) token § (e.g., hist_bos("§aba")=[§,2,1,2])
and without it (e.g., hist_nobos("aba")=[2,1,2]).

3. Double-Histograms, with BOS: for each token, the
number of unique tokens with same histogram value
as itself. E.g.: hist2("§abbc")=[§,2,1,1,2].

4. Sort, with BOS: ordering the input tokens lexicograph-
ically. e.g.: sort("§cba")="§abc".

5. Most-Freq, with BOS: returning the unique input to-
kens in order of decreasing frequency, with original
position as a tie-breaker and the BOS token for padding.
E.g.: most_freq("§abbccddd")="§dbca§§§§".

6. Dyck-i PTF, for i = 1, 2: the task of returning,
at each output position, whether the input prefix up
to and including that position is a legal Dyck-i se-
quence (T), and if not, whether it can (P) or cannot
(F) be continued into a legal Dyck-i sequence. E.g:
Dyck1_ptf("()())")="PTPTF".

We refer to double-histogram as 2-hist, and to each Dyck-i
PTF problem simply as Dyck-i. The full RASP programs for
these tasks, and the computation flows they compile down
to, are presented in Appendix B. The size of the transformer
architecture each task compiles to is presented in Table 1.

Upper bounding the difficulty of a task Given a RASP
program for a task, e.g. double-histogram as described in
Figure 1, we can compile it down to a transformer architec-

8The actual optimal solution for Dyck-2 PTF cannot be realised
in RASP as is, as it requires the addition of a select-best operator
to the language—reflecting the power afforded by softmax in the
transformer’s self-attention. In this paper, we always refer to our
analysis of Dyck-2 with respect to this additional operation.
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Attn.
Language Layers Heads Test Acc. Matches?

Reverse 2 1 99.99% X–

Hist BOS 1 1 100% X
Hist no BOS 1 2 99.97% X–

Double Hist 2 2 99.58% X–

Sort 2 1 99.96% 7
Most Freq 3 2 95.99% 7

Dyck-1 PTF 2 1 99.67% X–

Dyck-2 PTF 8 3 1 99.85% 7

Table 1: Does a RASP program correctly upper bound the
number of heads and layers needed for a transformer to
solve a task? In the left columns, we show the compilation
size of our RASP programs for each considered task, and
in the right columns we show the best (of 4) accuracies
of transformers trained on these same tasks, and evaluate
whether their attention mechanisms appear to match (using a
X–for partially similar patterns: see Figure 4 for an example).
For RASP programs compiling to varying number of heads
per layer, we report the maximum of these.

ture, effectively predicting the maximum number of layers
and layer width (number of heads in a layer) needed to solve
that task in a transformer. To evaluate whether this bound is
truly sufficient for the transformer, we train 4 transformers
of the prescribed sizes on each of the tasks.

We report the accuracy of the best trained transformer for
each task in Table 1. Most of these transformers reached
accuracies of 99.5% and over, suggesting that the upper
bounds obtained by our programs are indeed sufficient for
solving these tasks in transformers. For some of the tasks,
we even find that the RASP program is the same as or very
similar to the ‘natural’ solution found by the trained trans-
former. In particular, Figures 4 and 5 show a strong simi-
larity between the compiled and learned attention patterns
for the tasks Reverse and Histogram-BOS, though the trans-
former trained on Reverse appears to have learned a different
mechanism for computing length than that given in RASP.

Tightness of the bound We evaluate the tightness of our
RASP programs by training smaller transformers than those
predicted by our compilation, and observing the drop-off in
test accuracy. Specifically, we repeat our above experiments,
but this time we also train each task on up to 4 different
sizes. In particular, denoting L,H the number of layers and
heads predicted by our compiled RASP programs, we train
for each task transformers with sizes (L,H), (L − 1, H),
(L,H − 1), and (L− 1, 2H) (where possible) 9.

9The transformers of size (L− 1, 2H) are used to validate that
any drop in accuracy is indeed due to the reduction in number of
layers, as opposed to the reduction in total heads that this entails.
However, doubling H means the embedding dimension will be
divided over twice as many heads. To counteract any negative
effect this may have, we also double the embedding dimension for

1 opp_index = length - indices - 1;

2 flip = select(indices , opp_index ,==);

3 reverse = aggregate(flip , tokens);

Figure 4: Top: RASP code for computing reverse
(e.g., reverse("abc")="cba"). Below, its compila-
tion to a transformer architecture (left, obtained through
draw(reverse,"abcde") in the RASP REPL), and the at-
tention heatmaps of a transformer trained on the same task
(right), both visualised on the same input. Visually, the atten-
tion head in the second layer of this transformer corresponds
perfectly to the behavior of the flip selector described in
the program. The head in the first layer, however, appears
to have learned a different solution from our own: instead
of focusing uniformly on the entire sequence (as is done
in the computation of length in RASP), this head shows a
preference for the last position in the sequence.

We report the average test accuracy reached by each of
these architectures in Table 2. For most of the tasks, the
results show a clear drop in accuracy as the number of heads
or layers is reduced below that obtained by our compiled
RASP solutions for the same tasks—several of these reduced
transformers fail completely to learn their target languages.

The main exception to this is sort, which appears unaffected
by the removal of one layer, and even achieves its best results
in this case. Drawing the attention pattern for the single-
layer sort transformers reveals relatively uniform attention
patterns. It appears that the transformer has learned to take
advantage of the bounded input alphabet size, effectively

these transformers.
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1 same_tok = select(tokens , tokens , ==);

2 hist = selector_width(same_tok ,

3 assume_bos = True);

Figure 5: The RASP program for computing with-BOS histograms (left), alongside its compilation to a transformer
architecture (cream boxes) and the attention head (center bottom) of a transformer trained on the same task, without attention
supervision. The compiled architecture and the trained head are both presented on the same input sequence, "§aabbaabb".
The transformer architecture was generated in the RASP REPL using draw(hist,"§aabbaabb").

Language RASP Average test accuracy (%) with...
L,H L,H H−1 L−1 L−1, 2H

Reverse 2, 1 99.9 - 23.1 41.2
Hist 1, 2 99.9 91.9 - -

2-Hist 2, 2 99.0 73.5 40.5 83.5
Sort 2, 1 99.8 - 99.0 99.9

Most Freq 3, 2 93.9 92.1 84.0 90.2
Dyck-1 2, 1 99.3 - 96.9 96.4
Dyck-2 3, 1 99.7 - 98.8 94.1

Table 2: Accuracy dropoff in transformers when reducing
their number of heads and layers relative to the compiled
RASP solutions for the same tasks. The transformers trained
on the size predicted by RASP have very high accuracy, and
in most cases there is a clear drop as that size is reduced.
Cases creating an impossible architecture (H or L zero) are
marked with -. Histogram with BOS uses only 1 layer and
1 head, and so is not included. As in Table 1, Dyck-2 is
considered with the addition of select_best to RASP.

implementing bucket sort for its task. This is because a
single full-attention head is sufficient to compute for every
token its total appearances in the input, from which the
correct output can be computed locally at every position.

Feasibility of a RASP program We verify that a given
RASP program can indeed be represented in a transformer.
For this, we return to the tougher tasks above, and this time
train the transformer with an additional loss component en-
couraging it to learn the attention patterns created in our
compiled solution (i.e., we supervise the attention patterns
in addition to the target output). In particular, we consider
the tasks double-histogram, sort, and most-freq, all with
the assumption of a BOS token in the input. After train-

ing each transformer for 250 epochs with both target and
attention supervision, they all obtain high test accuracies on
the task (99+%), and appear to encode attention patterns
similar to those compiled from our solutions. We present
the obtained patterns for double-histogram, alongside the
compiled RASP solution, in Figure 1. We present its full
computation flow, as well as the learned attention patterns
and full flow of sort and most-freq, in Appendix A.

6. Conclusions
We abstract the computation model of the transformer-
encoder as a simple sequence processing language, RASP,
that captures the unique constraints on information flow
present in a transformer. Considering computation prob-
lems and their implementation in RASP allows us to “think
like a transformer” while abstracting away the technical
details of a neural network in favor of symbolic programs.
We can analyze any RASP program to infer the minimum
number of layers and maximum number of heads required
to realise it in a transformer. We show several examples
of programs written in the RASP language, showing how
operations can be implemented by a transformer, and train
several transformers on these tasks, finding that RASP helps
predict the number of transformer heads and layers needed
to solve them. Additionally, we use RASP to shed light on
an empirical observation over transformer variants, and find
concrete limitations for some “efficient transformers”.
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